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ABSTRACT
By jointly modeling user-item interactions and knowledge graph
(KG) information, KG-based recommender systems have shown
their superiority in alleviating data sparsity and cold start problems.
Recently, graph neural networks (GNNs) have been widely used in
KG-based recommendation, owing to the strong ability of capturing
high-order structural information. However, we argue that existing
GNN-based methods have the following two limitations. Interaction
domination: the supervision signal of user-item interaction will
dominate the model training, and thus the information of KG is
barely encoded in learned item representations;Knowledge overload:
KG contains much recommendation-irrelevant information, and
such noise would be enlarged during the message aggregation of
GNNs. The above limitations prevent existing methods to fully uti-
lize the valuable information lying in KG. In this paper, we propose a
novel algorithm namedKnowledge-AdaptiveContrastive Learning
(KACL) to address these challenges. Specifically, we first generate
data augmentations from user-item interaction view and KG view
separately, and perform contrastive learning across the two views.
Our design of contrastive loss will force the item representations to
encode information shared by both views, thereby alleviating the
interaction domination issue. Moreover, we introduce two learnable
view generators to adaptively remove task-irrelevant edges during
data augmentation, and help tolerate the noises brought by knowl-
edge overload. Experimental results on three public benchmarks
demonstrate that KACL can significantly improve the performance
on top-K recommendation compared with state-of-the-art methods.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Recommendation systems are widely used in real-world services
(e.g., e-commerce, advertising) to deliver the most relevant items to
users and alleviate the information overload [3, 24, 44]. To predict
user preference from interaction data, the classical collaborative
filtering (CF) [6, 26], which transforms interaction information
into latent representations, have achieved great success in many
recommendation scenarios [10, 32, 43].

Although CF-based methods have achieved promising perfor-
mance, they usually suffer from data sparsity and cold start prob-
lems. To mitigate this problem, many works introduce knowledge
graphs (KGs), which can provide rich side information of items, into
recommendation. Early works [2, 43] generate embeddings from
KG triplets based on shallow neural networks to provide context
information and assist the recommendation. Recently, graph neural
networks (GNNs) show strong ability in modeling relational data,
and have been extensively used in knowledge-based recommenda-
tion [22, 23, 25], owing to the effective aggregation of high-order
information.

The core challenge of knowledge-based recommendation is to
learn informative user and item representations from such struc-
tural knowledge [23, 31]. Despite the effectiveness of existing GNN-
based methods, we argue that they fall short in two aspects as
shown in Figure 1. Interaction domination: The supervision signal
of user-item interaction will dominate the model training, which
indicates that the information of KG is barely encoded in learned
item representations. Although some CKG-based methods [13, 25],
which construct collaborative knowledge graph (CKG) as a combi-
nation of user-item graph and KG, employ extra TransR [11] loss
on KG side, they still fail to fundamentally solve this problem. As an
evidence, we find that the attention scores of entity nodes are much
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Figure 1: An illustration of two limitations in the state-of-
the-art paradigm for KG-based recommendation (i.e., GNN
methods based on CKG modeling).

lower than those of users, when performing information propaga-
tion to item nodes in KGAT [25]. Thus, existing methods can not
sufficiently capture and utilize the valuable information lying in KG.
Knowledge overload: KG contains many recommendation-irrelevant
triplets, e.g., the triplet (𝑒2, copyright_date_of, 𝑣1) in Figure 1 can
hardly be used for recommending books to users. Besides, observed
user-item interactions also contain noises. As previous research [33]
mentioned, the neighborhood aggregation scheme in GNNs will
inevitably enlarge the impact of such noises.

Inspired by the recent success of contrastive learning (CL) tech-
nique, in this work we propose Knowledge-Adaptive Contrastive
Learning (KACL) method to address the above limitations. We first
build two augmented views (i.e., interaction view and knowledge
view) via edge dropping, and perform message aggregation sepa-
rately. Then our contrastive loss will force the representations of
an item across two views to be closer to each other, while those
of different items apart. Ideally, with the help of contrastive learn-
ing, the item representations will only encode the information
shared between interaction and knowledge views, thereby allevi-
ating the domination of interaction information and the noise of
recommendation-irrelevant knowledge. To facilitate the removal of
information unrelated to recommendation, we propose two learn-
able view generators to adaptively drop possibly unimportant edges
in the data augmentation of contrastive learning. The graph en-
coders used to build user, item and entity representations are based
on GNNs with relation-aware modifications to capture high-order
connectivity. In this way, KACL can learn high-quality representa-
tions and help improve the recommendation performance. Finally,
we leverage a multi-task training manner to jointly optimize the
contrastive loss with the classic recommendation loss and KG loss
to better encode the KG structure.

Experimental results on three public datasets show that KACL
achieves consistent and significant improvement over state-of-the-
art baselines on KG-based recommendation task. The relative im-
provements of ndcg@20 are 3.86%, 16.77% and 5.06% on Amazon-
Book, LastFM and Movielens, respectively. Ablation studies and the
results of cold start users/items further demonstrate our effective-
ness. In addition, we analyze learned view generators and find that
KACL is capable of identifying and removing task-irrelevant edges.

We summarize the contributions of this work as follows:

• We highlight two key limitations in the paradigm of state-
of-the-art methods for KG-based recommendation, i.e., interaction
domination and knowledge overload.

• We propose a novel model named KACL, that can automati-
cally drop task-irrelevant edges and encode the information shared
between user-item interaction view and KG view for high-quality
node representations.

• Experiments on three public benchmarks show that KACL can
significantly improve the performance on top-K recommendation
compared with state-of-the-art baselines.

2 RELATEDWORK
This work is mainly relevant to two research lines: knowledge
graph-based recommendation and graph contrastive learning.

2.1 Knowledge Graph-Based Recommendation
To alleviate the data sparsity problem in recommendation tasks,
many researchers leverage knowledge graph (KG) as additional
side information of items. Existing knowledge-based recommenda-
tion methods roughly fall into three categories: embedding-based
methods [2, 21, 43], path-based methods [7, 20, 28] and GNN-based
methods [13, 18, 25, 31]. Embedding-based methods learn entity rep-
resentations by knowledge graph embedding (KGE) techniques (e.g.
TransE [1] and TransR [11]), and then use them as extra context in-
formation to assist the recommender systems. Path-based methods
capture long-range connectivity by designing connection patterns
among items in KG (e.g., meta-path, meta-graph). Recently, with
the development of graph neural network (GNN), many methods
adopt GNNs as the basic models to jointly learn user preference and
perform KG completion. We can further group these methods into
two categories: The first category [14, 18, 22, 23, 31], represented
by KGCN [23], mainly considers the user preference to the rela-
tions in KG, and learns user-specific representation for each item
based on information aggregation of GNNs. The second category
is CKG-based modeling represented by KGAT [25], which con-
structs the hybrid structure of KG and user-item interaction graph
as collaborative knowledge graph (CKG), and then performs infor-
mation propagation over the CKG via attention mechanism. The
CKG-based paradigm has shown its superiority and thus becomes
the mainstream backbone of recent literatures [13, 25, 27, 30, 35].
However, as illustrated in Figure 1, the state-of-the-art CKG-based
paradigm still has two key limitations to be addressed.

2.2 Contrastive Learning for Recommendation
Inspired by the success of contrastive learning on language mod-
eling and visual representation learning, there have been some
recent works [33, 34, 40–42] introducing CL into recommender
system. For example, SGL [33] designs three operators to generate
augmented views and then propose a multi-task strategy to jointly
optimize contrastive loss and recommendation loss. SEPT [40] pro-
poses a general socially-aware contrastive learning framework
by mining extra social information of users. Most recently, few
papers [16, 39, 45, 46] focus on KG-based recommendation with
contrastive learning. CKER [16] introduces a CL module to learn
sharing user preferences by deriving additional supervision sig-
nals. KGCL [39] designs knowledge graph augmentation schema
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Figure 2: The model architecture of our proposed Knowledge-Adaptive Contrastive Learning (KACL).

to suppress noise in information aggregation and then proposes a
knowledge-guided contrastive learning paradigm to derives more
robust node representations. However, these CL modules cannont
address the main limitations (i.e. Interaction domination and Knowl-
edge overload) in recent works about KG-based recommendation.

3 PROBLEM FORMULATION
We begin by presenting the user-item interaction graph and knowl-
edge graph, and then describe the KG-based recommendation task.

User-Item Interaction Graph: Following the settings in GNN-
based recommendation [5, 25, 26], we construct a user-item bipartite
graph G𝑏 = {(𝑢,𝑦𝑢𝑣, 𝑣)} by historical user-item interactions (e.g.
consume, view, click), where 𝑢 ∈ U and 𝑣 ∈ V denote the user
and item of an interaction, U and V are the set of users and items
respectively, and 𝑦𝑢𝑣 is a binary value used to record whether
there is an interaction between the user and the item. If user 𝑢 has
interacted with item 𝑣 , 𝑦𝑢𝑣 = 1, otherwise 𝑦𝑢𝑣 = 0.

Knowledge Graph: In the KG-based recommendation problem,
we also have a knowledge graph G𝑘 = {(ℎ, 𝑟, 𝑡)} available, where
each triplet (ℎ, 𝑟, 𝑡) describes that there is a relationship 𝑟 ∈ R from
head entity ℎ ∈ I to tail entity 𝑡 ∈ I, where I and R denote the
sets of entities and relations in the knowledge graph. Here, I is
comprised of items V and non-item entities I\V . For example,
the triple (Leonardo DiCaprio, ActorOf, Titanic) states the fact that
Leonardo DiCaprio is the leading actor in movie “Titanic”. Note
that R contains relations in both canonical direction (e.g., ActorOf
) and inverse direction (e.g., ActedBy).

KG-based Recommendation: Given interaction graph G𝑏 and
knowledge graph G𝑘 , our goal is to learn a function 𝑦 (𝑢, 𝑣) that can
predict the probability that user 𝑢 will interact with item 𝑣 .

4 METHODOLOGY
In this section, we present our Knowledge-Aware Contrastive Learn-
ing framework (KACL), for the top-K recommendation task. Figure 2
presents the model architecture of our proposed KACL. We will
first introduce a classical GNN-based recommender, which is used
as backbones in this work and many previous KG-based recommen-
dation systems [13, 25]. Then we will present our KACL algorithm
for learning high-quality representations. Finally, we will present
how to train the model via a multi-task learning manner.

4.1 Classical GNN-based Recommender
Recommender systems aim to refine collaborative information from
the user-item interactions andmeasure the user preference on items.
To exploit high-order connectivity in user-item interaction graph
and perform high-quality recommendation, most existing models
on KG-based recommendation [5, 25, 26] employ graph neural
networks (GNNs) to learn a representation vector for each node
after hierarchical message aggregations on graph G𝑏 . Inspired by
the interpretability and effectiveness of GAT [19], many previous
methods adopt GAT as the base architecture for recommendation.

4.1.1 Graph Attention Network. We start by describing a sin-
gle layer of GAT [19], which consists of neighborhood aggregation
and representation updating. Considering a node 𝑖 , we use N𝑖 to
represent the neighbors of node 𝑖 . To aggregate the first-hop struc-
ture of each node 𝑖 , we first compute the linear combination of its
neighbors’ representations by hN𝑖

=
∑
𝑗∈N𝑖

𝛼𝑖 𝑗h𝑗 , where h𝑗 is the
representation of node 𝑗 , and 𝛼𝑖 𝑗 denotes the attention score of
node 𝑖 to node 𝑗 , calculated as follows:

𝛼𝑖 𝑗 =
exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇

𝑏
[𝑊𝑏h𝑖 | |𝑊𝑏h𝑗 ]))∑

𝑘∈N𝑖
exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇

𝑏
[𝑊𝑏h𝑖 | |𝑊𝑏h𝑘 ]))

, (1)

where | | is the concatenation operation, 𝑎𝑏 and𝑊𝑏 are trainable
parameters.

Next, we employ GCN Aggregator [9] to update the representa-
tion of node 𝑖 . More formally, the representation of node 𝑖 in the
𝑙-th layer is updated as:

h(𝑙 )
𝑖

= 𝜎 (𝑊 (𝑙 )
𝑏

(h(𝑙−1)
𝑖

+ h(𝑙−1)N𝑖
)), (2)

where𝑊 (𝑙 )
𝑏

is the learnable weight matrix in the 𝑙-th layer, 𝜎 is

the activation function. Note that the representations h(0)
𝑖

of every
node 𝑖 are free parameters to be trained. After stacking 𝐿 GAT layers,
the layer-aggregation mechanism [37] is adopted to generate the
final representations h𝑖 for prediction.

4.1.2 Recommendation Loss. Given the final representations
of a user 𝑢 and an item 𝑣 , we can employ inner product 𝑦 (𝑢, 𝑣) =
h𝑢𝑇 h𝑣 to measure the user preference on item 𝑣 .To optimize model
parameters, the BPR loss [17] is a common choice to capture the
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pair-wise preference.

L𝐶𝐹 (𝑢, 𝑣+, 𝑣−) = − log𝜎 (𝑦 (𝑢, 𝑣+) − 𝑦 (𝑢, 𝑣−)) . (3)

where (𝑢, 𝑣+) is the positive interaction, (𝑢, 𝑣−) is a random nega-
tive interaction, and 𝜎 is the Sigmoid function. We name the GNN
encoder based on GAT used for L𝐶𝐹 as GNNrec.

4.2 Knowledge-Adaptive Contrastive Learning
The contrastive learning part consists of three key components: (1)
adaptive view generations from interaction and knowledge graphs
separately; (2) relation-aware structural encoding for user/item/entity
on augmented graphs; (3) contrastive learning task, which forces
item representations to encode information shared by both views.

4.2.1 Adaptive Data Augmentation on Graph Structure. To
conduct contrastive learning, we first derive two different aug-
mented views from interaction graph and knowledge graph, respec-
tively. For brevity, we name the view over the interaction graph as
interaction view, and the view over the knowledge graph as knowl-
edge view. Unlike the data augmentation in previous CL-based
studies [36, 40] that only extract the relationship among a specific
type of nodes, we propose to preserve the node/edge heterogeneity
in augmented views. Such heterogeneity can retain more infor-
mation of original data, and is essential for the knowledge view
where the contributions of different relations to recommendation
vary a lot. To fully explore the cross-view information helpful for
recommendation, we propose to design augmentation strategies
that tend to keep important and recommendation-relevant edges
unchanged, while perturbing possibly unimportant ones.

Specifically, we introduce a novel augmentation method, which
first corrupts the input graphs by randomly removing a certain ratio
of edges and then employs two learnable view generators to further
remove unimportant edges, respectively. For graph corruption, we
directly perform perturbation to the entire graphs G𝑏 and G𝑘 by
randomly dropping out edges with a certain ratio 𝜌 in every epoch,
which is similar to previous works [33, 40], and then we can obtain
sampled subsets Ẽ𝑏 and Ẽ𝑘 of G𝑏 and G𝑘 , respectively.

In order to further filter out noise and recommendation-irrelevant
information, we introduce two view generators (i.e., interaction
view generator and knowledge view generator) to select a modi-
fied subset Ê from Ẽ. Formally, the generators will model a real-
valued importance weight𝑤𝑒 and calculate sampling probability
𝑝𝑒 ∈ {0, 1} for each edge 𝑒 . Edge 𝑒 will be retained in Ê if 𝑝𝑒 = 1
and dropped otherwise.

For interaction view generator, the weight𝑤𝑏𝑒 is defined as:

𝑤𝑏𝑒 = 𝑀𝐿𝑃𝑏 ( [h
(0)
𝑢 | |h(0)𝑣 ]), (4)

where edge 𝑒 = (𝑢, 𝑣) , 𝑤𝑏𝑒 denotes the edge importance, MLP
is short for multi-layer perceptron, h(0)𝑢 , h(0)𝑣 are user and item
embeddings, respectively. A higher score of𝑤𝑏𝑒 suggests that the
edge is more likely to be critical and should be preserved. To make
the edge dropping procedure differentiable and enable an end-to-
end optimization process, we relax the discrete 𝑝𝑏𝑒 to a continuous
variable in [0, 1] and apply the Gumbel-Max reparameterization
trick [12, 15]. Specifically, the probability 𝑝𝑏𝑒 is calculated by:

𝑝𝑏𝑒 = 𝜎 ((log(𝜖) − log(1 − 𝜖) +𝑤𝑏𝑒 )/𝜏𝑏 ) (5)

where random variable 𝜖 ∼ Uniform(0, 1), 𝜎 (·) is the Sigmoid func-
tion, and temperature hyper-parameter 𝜏𝑏 is used to control the
approximation. When 𝜏𝑏 goes to 0, 𝑝𝑏𝑒 will move towards binary.
We denote the augmented interaction graph as Ĝ𝑏 . In practice, we
can multiply the sampling probability to the aggregation function
as approximation and thus enable end-to-end training.

Compared with interaction view, knowledge view has multiple
types of relations. Previous work [30] has shown that the semantic
meanings and importance of different relations are quite diverse
from each other, and there are amassive amount of recommendation-
irrelevant interactions in KGs. To tackle this issue, we model the
edge weight𝑤𝑘𝑒 in knowledge view by jointly considering entities
and relations. Given a triplet 𝑒 = (ℎ, 𝑟, 𝑡) from knowledge view, the
weight𝑤𝑘𝑒 can be calculated by:

𝑤𝑘𝑒 = 𝑀𝐿𝑃𝑘 (𝑊 𝑘
𝑟 (e(0)

ℎ
| |e(0)𝑡 )), (6)

where𝑊 𝑘
𝑟 is the transformation matrix of relation 𝑟 , e(0)

ℎ
and e(0)𝑡

are entity embeddings. A higher score of𝑤𝑘𝑒 suggests that the triplet
is more likely to be useful in recommendation. After getting weight
𝑤𝑘𝑒 , we can generate augmented knowledge graph Ĝ𝑘 in a similar
way as interaction view generator, and employ hyper-parameter
𝜏𝑘 to control the probability 𝑝𝑘𝑒 .

4.2.2 Relation-aware Graph Attention for Node Encoding.
Given the augmented graphs in interaction and knowledge views,
we use two different graph encoders to capture the high-order
structural context as node representations.

For interaction view, we denote the encoder asGNNv1, which em-
ploys the same GNN architecture as classical recommender GNNrec.
Given the augmented graph Ĝ𝑏 and the initial representation ĥ(0)

𝑖
,

GNNv1 can effectively encode the high-order context into ĥ𝑖 for
every user or item node 𝑖 as illustrated in Section 4.1.

Though the architecture of GNNv1 is powerful in modeling inter-
action view, it may not be the best choice for knowledge view due
to the neglect of relation types. To solve this problem, we extend
the original attention mechanism by considering the influence of
relations, and get the heterogeneous graph encoder GNNv2 special-
ized for knowledge view. In specific, we first allocate a learnable
embedding for each relation and entity, and then calculate the atten-
tion score by incorporating the relational embedding into attention
calculation. Formally, the attention score between head entity ℎ

and tail entity 𝑡 in relation type 𝑟 (⟨ℎ, 𝑡⟩) ∈ R is computed as:

𝛼ℎ𝑡 =
exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇

𝑘
[𝑊𝑘eℎ | |𝑊𝑟m𝑟 (⟨ℎ,𝑡 ⟩) | |𝑊𝑘e𝑡 ]))∑

𝑗∈Nℎ
exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇

𝑘
[𝑊𝑘eℎ | |𝑊𝑟m𝑟 (⟨ℎ,𝑗 ⟩) | |𝑊𝑘e𝑗 ]))

,

(7)
where eℎ and e𝑡 are entity embeddings, 𝑟 (⟨ℎ, 𝑡⟩) denotes the relation
type between head entityℎ and tail entity 𝑡 , andm𝑟 (⟨ℎ,𝑡 ⟩) represents
the embedding of relation 𝑟 (⟨ℎ, 𝑡⟩). Other modules of GNNv2 are
the same as those of GNNv1. Given the knowledge view encoder
GNNv2 and augmented graph Ĝ𝑘 , we can obtain the final node
embeddings ê𝑖 after multiple layers’ message aggregation.

4.2.3 Contrastive Learning Task. Note that the representation
space of interaction and knowledge views are different. Therefore,
we will feed item embeddings (ĥ𝑣, ê𝑣) from the two views into two
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corresponding MLPs, mapping them into the same space (z𝑏𝑣 , z𝑘𝑣 )
where contrastive loss is calculated.

Now we will introduce our strategy of selecting contrastive pairs.
Our goal is to encourage graph encoders to preserve the information
shared across interaction and knowledge views. Thus, for each item
𝑣 , we treat the two views of the same item as a positive pair {z𝑏𝑣 , z𝑘𝑣 }.
On the other side, we will pair item 𝑣 with a random item 𝑗 , and
get {z𝑏𝑣 , z𝑘𝑗 } and {z𝑏

𝑗
, z𝑘𝑣 } as negative pairs. Then for each item 𝑣 ,

the contrastive loss will encourage the consistency between the
representations of its different views, while enforce the divergence
of negative pairs. Formally, we adopt an extension version based
on InfoNCE loss [4]:

L𝐶𝐿 (𝑣) = − log
exp(𝑠 (z𝑏𝑣 , z𝑘𝑣 )/𝜏𝑐𝑙 )∑

𝑗∈N∪{𝑣} exp(𝑠 (z𝑏𝑣 , z𝑘𝑗 )/𝜏𝑐𝑙 ) + exp(𝑠 (z𝑏
𝑗
, z𝑘𝑣 )/𝜏𝑐𝑙 )

(8)
where 𝑠 (·) measures the cosine similarity of two vectors, N is the
set of negative samples, and 𝜏𝑐𝑙 is the temperature hyper-parameter.

4.3 Model Prediction and Optimization
4.3.1 The Overall Loss Function. Note that the contrastive
learning module only focuses on learning item representations
in a self-supervised manner, and ignores the supervision of collabo-
rative filtering. Therefore, we need an additional recommendation
loss to learn user preference. In particular, we simply concatenate
the user/item embeddings from the recommender and contrastive
modules, and employ inner product as score function. Also, since
knowledge view only contains item embeddings, we will allocate a
trainable embedding ê𝑢 for each user. Then we can compute the
user preference function 𝑦 (𝑢, 𝑣) as:

𝑦 (𝑢, 𝑣) = (h𝑢 | |ĥ𝑢 | |ê𝑢 )𝑇 (h𝑣 | |ĥ𝑣 | |ê𝑣). (9)

Then the recommendation loss is the same as Eq. (3).
Besides, to effectively encode KG in recommender systems, we

add an auxiliary regularization term to the knowledge view. Fol-
lowing DistMult [38], we will optimize the scoring function below
to strengthen the KG information in ê𝑖 :

𝑓 (ℎ, 𝑟, 𝑡) = ê𝑇
ℎ
𝑅𝑟 ê𝑡 , , (10)

where 𝑅𝑟 is a transformation matrix of relation 𝑟 . A lower score of
𝑓 (ℎ, 𝑟, 𝑡) suggests that it is more likely to be true. The training loss
of the regularization term is also a pair-wise ranking one:

L𝐾𝐺 (ℎ, 𝑟, 𝑡+, 𝑡−) = − log𝜎 (𝑓 (ℎ, 𝑟, 𝑡−) − 𝑓 (ℎ, 𝑟, 𝑡+)), (11)

where (ℎ, 𝑟, 𝑡+) is a positive triplet in knowledge graph and (ℎ, 𝑟, 𝑡−)
is a negative one by replacing tail entity randomly.

Finally, we leverage a multi-task training strategy to jointly
optimize the recommendation loss, the contrastive learning loss
and the knowledge graph regularization term. The overall loss
function is:

L = L𝐶𝐹 + 𝜆1L𝐶𝐿 + 𝜆2L𝐾𝐺 , (12)

where 𝜆1, 𝜆2 are hyper-parameters to balance different terms. In
practice, 𝜆1, 𝜆2 are fixed as 0.1 and 1, respectively.

Table 1: The statistics of datasets.

Dataset Amazon-Book LastFM Movielens

# Users 70,679 23,566 37,385
# Items 24,915 48,123 6,182

# Interactions 846,434 3,034,763 539,300
# Entities 113,487 106,389 24,536
# Relations 39 9 20
# Triplets 2,557,746 464,567 237,155

4.3.2 Optimization Details and Complexity. To optimize the
multi-task objective in Eq. (12), we decouple the training process
into three iterative stages: knowledge graph regularization, con-
trastive learning and recommendation task. We iteratively update
the corresponding parameters to minimize the losses until we reach
the best performance on the validation set. In particular, we update
the parameters of two view generators in the recommendation loss,
and then freeze the parameters in the contrastive learning to adap-
tively filter out unimportant and recommendation-irrelevant edges.
All the randomness in data augmentation will be re-sampled in ev-
ery epoch. For negative samples, we will use all other items in the
same batch. We employ Adam [8] optimizer for parameter training.
The time and space complexity of KACL is linear with the scale
of the dataset (i.e., number of nodes and edges), which enables an
efficient inference process. Code and more implementation details
are provided in https://github.com/wsdmanonymous/KACL.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 DatasetDescription. To evaluate the effectiveness of KACL,
we conduct experiments with three benchmark datasets: Amazon-
Book1, LastFM2 andMovielens3, which are publicly available and
have been used in existing work [13, 22, 23, 25] on knowledge-based
recommendation. All the above datasets adopt the 10-core setting
(i.e. filtering out the low-frequency users and items which appear
less than ten times) to ensure the quality of interaction data. The
statistics of the three datasets are shown in Table 1. Following the
same setting of KGAT [13, 25, 29], for each user, we randomly split
80% of interactions for training, and 20% interactions for testing.
From the training set, we randomly select 10% of interactions as
validation set to tune hyper-parameters.

5.1.2 Evaluation Metrics. We adopt two widely used metrics of
top-K recommendation and preference ranking tasks: recall@K and
ndcg@K, where K is set as 20. For each user in the test sets, recall@K
indicates the percentage of one’s rated items that emerge in the
top K recommended items. ndcg@K is the normalized discounted
cumulative gain at K, which takes the position of correctly recom-
mended items into account. We report the average metrics of all
users in the testing set. Larger values indicate better performance.

5.1.3 Baselines. To verify the effectiveness of our method, we
compare KACL with the following recommendation baselines:

1http://jmcauley.ucsd.edu/data/amazon/
2https://grouplens.org/datasets/hetrec-2011/
3https://grouplens.org/datasets/movielens/
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• BPR-MF [17] is a classic matrix factorization model that only
considers the user-item interactions.

•CKE [43] combines collaborative filter (CF)modulewith knowl-
edge embeddings of items derived from TransR.

• KGCN [23] presents a GNN-based model, which considers
user preference on KG relations and generates user-specific item
representations by weighted information aggregation.

•KGNNLS [22] provides a novel label smoothness regularization
over the edge weights, which provides better inductive bias.

• KGAT [25] constructs a collaborative knowledge graph (CKG)
from KG and user-item graph and applies an attentive aggregation
mechanism to generate user and item representations.

• CKAN [31] further extends the KGCN by considering the
user-item graph. Specifically, it utilizes different neighborhood ag-
gregation strategies on the user-item graph and KG respectively.

• KGPL [18] proposes a augmenting labeled samples paradigm
through pseudo-labelling to alleviate cold-start problem.

• DSKReG [30] employs a relational GNN with differentiable
sampling strategy on CKG to learn user preference.

• KGIN [27] is a state-of-the-art KG-based method, which uses
auxiliary item knowledge to explore the users’ intention behind
the user-item interactions.

•CKER [16] introduces self-supervised learning tomaximize the
mutual information between the interaction-side and knowledge-
side user preferences by designing additional supervision signal.

• KGCL [39] integrates knowledge augmentation schema into
a cross-view CL module to alleviate the influence of information
noise for knowledge graph-enhanced recommender systems.

5.1.4 Parameter Settings. For a fair comparison, we set the em-
bedding dimension as 64, the optimizer as Adam, and the batch size
as 8192 for all models. For each baseline, all other hyper-parameters
are set following the suggestions from the original settings in their
papers. We randomly initialize the model parameters with Xavier
initializer. As suggested in [13, 25, 27], pre-trained MF embeddings
is used to stabilize and speed up the model training.

Other hyper-parameters of KACL are set as follows: the number
of GNN layers are searched in {1, 2, 3, 4} and set as 2 in all exper-
iments; the temperature 𝜏𝑐𝑙 is tuned in {0.5, 0.6, 0.7, 0.8, 0.9} and
set as 𝜏 = 0.7; the edge dropout rate of graph corruption is set to
𝜌 = 0.3 in all experiments; the temperature pair (𝜏𝑏 , 𝜏𝑘 ) of view
generators is set to (0.03, 1.5), (0.7, 1.5) and (0.5, 1.5) in Amazon-
Book, LastFM and Movielens, respectively. To avoid over-fitting,
we also apply L2 regularization (coefficients are set to 10−3) and
dropout (dropout rate is 0.1) in every layer of our proposed KACL.

5.2 Performance Comparison
The results of the top-K recommendation are presented in Table 2.
Based on the experimental results, we can observe that:

• KACL consistently and significantly outperforms all state-of-
the-art baselines across three datasets in terms of all measures.
This observation demonstrates the robustness and effectiveness of
KACL. We attribute these improvements to the relational modeling
of KACL: (1) By encoding the interaction graph and KG separately,
KACL can better capture user preference and item knowledge infor-
mation; (2) By further performing knowledge-adaptive contrastive
learning on two graphs, KACL can better encode the information

Table 2: Experimental results of recall@20 and ndcg@20 in
top-K recommendation.

Model Amazon-Book LastFM Movielens
recall ndcg recall ndcg recall ndcg

BPR-MF 0.1321 0.0682 0.0715 0.0637 0.4052 0.2609
CKE 0.1352 0.0699 0.0746 0.0652 0.4106 0.2669
KGCN 0.1464 0.0769 0.0819 0.0705 0.4237 0.2753

KGNNLS 0.1448 0.0759 0.0806 0.0695 0.4218 0.2741
KGAT 0.1507 0.0802 0.0877 0.0749 0.4532 0.3007
CKAN 0.1467 0.0702 0.0812 0.0690 0.4314 0.2891
KGPL 0.1503 0.0785 0.0896 0.0751 0.4417 0.2864

DSKReG 0.1551 0.0863 0.0924 0.0816 0.4589 0.3017
KGIN 0.1631 0.0881 0.0967 0.0847 0.4661 0.3120
CKER 0.1619 0.0863 0.0951 0.0832 - -
KGCL 0.1569 0.0833 0.0899 0.0793 0.4516 0.2967
KACL 0.1657 0.0915 0.1133 0.0989 0.4752 0.3278

%Improv 1.35% 3.86% 17.18% 16.77% 1.95% 5.06%

shared across the two views into item representations. (3) Bene-
fiting from the regularization to KG, KACL can effectively collect
more informative signals from the entities and relations.

• Jointly analyzing KACL across the three datasets, we find that
the improvements on LastFM are more significant than those on
Amazon-Book and Movielens. The relative improvements of Re-
call@20 on both Amazon-Book and Movielens are under 2%. This
might be caused by the characteristics of datasets: (1) both interac-
tion and KG data on LastFM offer denser and richer information
than that on Amazon-Book and Movielens; and (2) in Amazon-
Book and Movielens, the item context information contained in
the knowledge graph is similar to that in the interaction graph
(i.e., there is little supplementary information in KG). Specifically,
for each item, we compare the similarity of the second-order item
neighbors from knowledge graph and interaction graph, and then
we find that the similarity score of Movielens is the highest and very
close to Amazon-Book, and LastFM is the lowest. This indirectly
indicates that KACL is good at capturing KG information.

• Compared with BPR-MF, the results of KG-based methods (e.g.,
CKE, KGCN, KGAT, KGIN) verify the importance of knowledge
graph. By simply incorporating KG embeddings into MF, CKE per-
forms better than BPR-MF. However, since TransR in CKE only
captures the first-order neighbors in KG and ignores long-range
connectivity, GNN-based methods substantially outperform CKE
in most cases. Also, as the state-of-the-art paradigm for KG-based
recommendation, CKG-based methods (i.e., KGAT, KGIN, DSKReG)
perform better than KGCN, KGNNLS, and CKAN. The most pos-
sible reason is that KGCN-based methods ignore the high-order
context in user-item interaction graph.

• Compared with CKER and KGCL which design CL to incor-
porate the KG information to enrich node representations, the im-
provement of KACLmostly comes from our design of the knowledge-
adaptive contrastive task, which employs adaptive data augmenta-
tion to filter out recommendation-irrelevant noises, and relation-
aware graph encoder to fully utilize the structure information.

5.3 Performance under Different Sparsity
Since a key motivation of KG-based model is to alleviate data spar-
sity and cold start problem, we further investigate the performance
of these methods for users and items with different sparsity level.
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Amazon-Book LastFM Movielens

Figure 3: Performance comparison over user/item groups with different sparsity. The background histograms indicate the
density of each group. Each line presents the ndcg@20 performance of the corresponding method. Due to space limitation, we
omit the results of KGCN which have a similar trend to that of KGNNLS. Best viewed in color.

Table 3: Comparison of KACL and its ablated variants. The
improvements of KACL over all variants are significant (0.05
level paired t-test).

Model Amazon-Book LastFM Movielens
recall ndcg recall ndcg recall ndcg

w/o CL 0.1563 0.0802 0.0912 0.0808 0.4614 0.3094
w/o Ada 0.1614 0.0883 0.1091 0.0946 0.4719 0.3227
w/o KG 0.1584 0.0827 0.1026 0.0912 0.4695 0.3196
KACL 0.1657∗ 0.0915∗ 0.1133∗ 0.0989∗ 0.4752∗ 0.3278∗

5.3.1 User-side Performance Analysis. Following the setting
of KGAT [25], we construct four groups of users with different
sparsity levels according to the number of observed interactions for
each user in the training set, and let different groups have similar
total interactions. Then we divide the testing data into four subsets
by user groups. Figure 3 presents the results of ndcg@20 metric on
different user groups in Amazon-Book, Last-FM, and Movielens. We
can observe that our KACL achieves consistently higher ndcg@20
than other methods for each user group, especially on the sparsest
user groups in all datasets. It demonstrates that our proposed model
performs well on cold start users by introducing KG information
into collaborative filtering. Compared with sparse user groups,
KACL slightly outperforms baselines in the most right user groups,
especially in the Amazon-Book dataset. One possible reason is that
users can obtain enough information from rich interactions, and
knowledge graph can not provide additional useful information.

5.3.2 Item-side Performance Analysis. To further validate the
improvement of KACL on cold-start items, we use a similar strategy
to the user side and then get four item groups for each dataset. As
shown in Figure 3, we can observe that the performance of our
model and baselines has a significant decline in the sparse item
groups due to the challenge of learning representations for inactive

items. Compared with baselines, KACL shows significant relative
improvements in all groups, especially for the sparest group. Hence,
our knowledge-adaptive contrastive learning is beneficial to guide
the representation learning of items with sparse behaviors.

5.4 Ablation Analysis
To study the impact of our key components, we consider different
model variants of KACL from three perspectives and analyze their
effects. The KACL w/o CL removes knowledge-adaptive contrastive
learning module to evaluate the benefits from contrastive learning.
To examine the effect of the adaptive view generators, we only
retain graph corruption in data augmentation procedure, termed
KACL w/o Ada. Moreover, the KACL w/o KG disables the auxiliary
KG regularization to verify the necessity of KG embedding.

From the results of the ablation study in Table 3, we make the fol-
lowing observations: (1) The full version of our KACL consistently
achieves the best performance, which demonstrates that each com-
ponent of KACL will contribute to the performance. (2) Performing
multi-task learning with extra contrastive task achieves better per-
formance than recommendation task alone. (3) The adaptive data
augmentation is necessary in recommendation scenario, which can
effectively drop out recommendation-irrelevant information and
alleviate knowledge overload problem. (4) The regularization of KG
embedding is beneficial in capturing the KG structure.

5.5 Influence of Hyper-parameters
We present the hyper-parameter study results of KACL in Figure 4.
Due to the space limitation, we omit the results on Amazon-Book
and LastFM which have a similar trend to that on Movielens.

• Effect of temperatures 𝜏𝑘 and 𝜏𝑏 To evaluate the influence
of 𝜏𝑘 , we vary its value from 0.2 to 0.6 and draw both recall@20
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(a) Temperature 𝜏𝑘 (b) Temperature 𝜏𝑐𝑙

(c) Layer size (d) Dropout rate 𝜌

Figure 4: Hyper-parameter sensitivity analysis onMovielens.

Table 4: Top-5 relations with the lowest/highest learned drop-
ping ratios on Amazon-Book dataset.

Id Relation Dropping ratio Triplets

1 object_type < 10−4 666,473
8 book_subject < 10−4 39,180
9 literary_genre < 10−4 50,388
14 author < 10−4 37,255
17 book_character < 10−4 10,182

2 copyright_date 0.853 11,657
7 notable_types 0.852 106,637
6 date_of_first_publication 0.810 17,298
11 original_language 0.797 13,916
12 is_reviewed 0.601 4,752

and ndcg@20 scores to show the influence. In Figure 4(a), we can
find the model has the best performance in 0.5. For 𝜏𝑏 , the change
under different values is even less than that of 𝜏𝑘 , and thus we omit
the lines of 𝜏𝑏 to avoid overlapping.

• Effect of temperature 𝜏𝑐𝑙 In Figure 4(b), we draw ndcg@20
score to show the effect of the value of 𝜏𝑐𝑙 . KACL performs better
when the value increases from 0.5 to 0.7, and then decreases quickly
as the value increases.

• Effect of layer number 𝐿 of both GNNv1 and GNNv2 Fig-
ure 4(c) shows the ndcg@20 results by stacking GNN layer from 1
to 4. We can observe that the best performances are achieved when
𝐿 is 2 and the results start to decline when we further increase the
number of layers because of over-smoothing.

• Effect of edge dropout rate 𝜌 To explore the impact of edge
dropout rate, we experiment KACL under different rates while keep-
ing other hyper-parameters unchanged. The comparison results
show that KACL with 𝜌 = 0.3 performs better.

5.6 Study on Effectiveness and Explainability
To validate the effectiveness of KACL on alleviating knowledge
overload, we analyze the learned edge dropping probability in
the adaptive knowledge view generator on Amazon-Book, i.e., the

(a) Book “The Copper Beech” (b) Book “Cold Sassy Tree”

Figure 5: Case study of learned edge dropping probabilities
on Amazon-Book dataset.

dataset with the largest number of relations. First, we compute the
average edge dropping ratio of each relation, and show the top-5
relations with the lowest or highest ratios in Table 4. Intuitively,
the upper five relations are more useful for recommending books
to users, while the lower five provide little information relevant
to the recommendation. This observation shows the ability of our
adaptive data augmentation in alleviating noises. To further prove
that the relations with the highest learned dropping ratios are truly
task-irrelevant, we construct two subsets of KG with similar num-
bers of total triplets: relation sets (8, 9, 14, 19) and (2, 6, 7, 11), and
respectively train two KACLmodels by replacing the entire KGwith
the two subsets. The recall@20 are respectively 0.1612 and 0.1559,
which demonstrates the denoising ability of KACL in relation-level.
Besides, we present the case study of book ids 3 and 4 on Amazon
dataset in Figure 5, and the results can also match our intuition.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel and compact model KACL for
KG-based recommendation, which goes beyond the limitations of
the typical CKG-based paradigm and employs a new paradigm
based on contrastive learning. We employ a multi-task learning
framework which can supplement the classical recommendation
loss with extra contrastive learning between user-item interaction
graph view and knowledge graph view. The contrastive learning
module can extract the information shared by both views, and thus
alleviates the interaction domination and task-irrelevant noises.
Adaptive view generators are also proposed to help remove edges
unrelated to recommendation in data augmentation. Experimental
results validate the advantages of our KACL over all state-of-the-
art models, and demonstrate the effectiveness of each proposed
component.

For future work, we will explore the migration of KACL to other
recommendation scenarios suffering from heavy noises. We can
also investigate other graph augmentation techniques for recom-
mendation task as well, such as pseudo-labeling or self-training.
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